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Abstract 

The code REACFLOW developed at the JRC Ispra combines advanced numerical tech- 
niques for the simulation of transient, multi-dimensional, multi-component gas flows undergo- 
ing chemical reactions to a unique tool. It uses a true 2-D discretisation with an unstructured 
triangular grid to ensure a maximum of flexibility for the representation of complex geometries. 
The numerical discretisation uses a finite volume scheme based on an approximate Riemann 
solver. Explicit, implicit and semi-implicit methods cover the whole range of time scales. 
Compressible and incompressible flow is treated with an arbitrary number of components. 
Chemical reactions are calculated fully implicitly. Diffusion processes are also modelled using 
a finite volume equivalence to the finite element Galerkin method. A k-e turbulence model is 
currently being implemented. A system for dynamic grid adaptation automatically detects 
locations of refinement and coarsement based on local gradients of flow variables. The code 
capability will be demonstrated by various applications, including a hydrogen/air explosion in 
a containment and a ‘tulip’ flame calculation. 
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1. Introduction 

Understanding, predicting and modelling the heat and mass transfer processes in 
a postulated accident is an important issue to prove the safety of an industrial plant. It 
helps to predict the thermal and mechanical loads on structures due to the combus- 
tion of vapour clouds, gas explosions, and flame front and detonation/blast wave 
propagation. In this context it may be important to investigate the conditions under 
which a flammable mixture may form as a consequence of a fuel release and the 
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redistribution of gaseous components by free convection and species diffusion for 
a given geometry. The efficiency of safety devices such as explosion vents, flame proof 
enclosures, flame arresters, etc. may be analysed taking into account the nature of the 
fuel (e.g. hydrogen hydrocarbon mixtures), the heterogeneity of the explosive mixture 
and in particular the geometry of the containment (obstacles, multi-compartment, 
etc.). For this purpose the code REACFLOW has been developed at the JRC Ispra, 
which combines advanced numerical simulation techniques for the prediction of 
transient, multi-dimensional, multi-component gas flows undergoing chemical reac- 
tions. 

2. Structure of the numerical solver 

The basic equations to be solved are the equations imposing the conservation of 
mass, momentum and total energy (see Refs. [l, 23 and practically any fluid dynamics 
textbook). These are time-varying non-linear differential equations. The terms in the 
equations can be divided into four categories: 
_ the transient term giving the rate of change of the conserved quantity, 
_ convective terms describing the flow due to pressure differences and velocity, 
_ diffusive terms, covering heat conduction, molecular diffusion and viscosity, 
_ source terms, in this case chemical source terms and gravity. 
In an integral formulation a conservation equation will have the following general 
form where q is the conserved quantity and the integration is over the volume 52 with 
the boundary a52 

; qdI’+ 
s s 

n.F,,,,dS+ 
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PdV = 0. 
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Here n is the outward normal to the volume. F,,,, and Fdiff are convective and 
diffusive fluxes, respectively, and P is the source term. The advantage of this formula- 
tion is that once the fluxes at each boundary segment are calculated they can be 
subtracted directly from the amount of the conserved variable in the given control 
volume and added to the neighbouring volumes. Thus, in the absence of source terms 
the total amount of the conserved variable is automatically conserved. 

3. Discretisation of the conservation equations 

The transient term is discretised by the Euler step method. The time is divided into 
discrete steps of varying size, At”, and the partial derivative with time becomes 

aq_qn+’ -qn 
at = At” . 

The plane is discretised by dividing it into triangular areas as shown in Fig. 1. 
A control volume is defined around each vertex (node) bounded by the medians of the 
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Fig. 1. Triangular grid and the corresponding control volumes. 

adjacent triangles (Fig. 1). The variables to calculate at each time step are then the 
averages over each control volume of the conserved variables. 

The time scales of the processes described in the problem vary widely, with some of 
the elementary chemical reactions having time scales up to 10 orders of magnitude 
smaller than the diffusive processes. Therefore different methods will be used to deal 
with the convective, diffusive and source terms. They are solved separately by an 
operator splitting procedure: starting with the state q” at a given time t” a problem 
which consists only of the transient term and convective term resulting in an inter- 
mediate state q* is solved, then from this new state the problem of the transi- 
ent + diffusive terms is solved and finally the transient + source terms problem is 
solved to reach the state at the end of the n’th time step. The convective and diffusive 
steps may be solved simultaneously. Each of these steps will be described in more 
detail below. 

4. Solution of the convective problem 

In each control volume only the average of each conserved variable is known. In 
order to find the values of the flux at the edge of the control volume the conserved 
variables are either assumed to be constant (first-order calculation) or varying linearly 
(second order) over the control volume. This implies that the fields of conserved 
variables in general will be discontinuous across the boundaries. The problem of 
a discontinuity dividing two regions with constant values is termed a Riemann 
problem. Various methods exist for solving such a problem numerically for a system of 
conservation laws [3-53. These will not be described in detail here. The fluxes may be 
evaluated either at the present time step (explicit method) or at the next time step 
(implicit method). In th e fi t rs case the fluxes may be calculated directly and the state 
updated accordingly. In the implicit case the fluxes depend on the unknown state at 
the next time step. The result is a set of N x (r + 2 + 1) coupled algebraic equations to 
be solved. N is the total number of control volumes and r is the number of different 
chemical species. The 2 comes from the equations for the two components of the 
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momentum and the 1 from the single equation for the energy. These equations are 
non-linear but may be linearised by Taylor expansion to first order. The resulting set 
of linear equations may be solved using an iterative procedure, for example, 
a Gauss-Seidel method. The implicit method is much more time-consuming but has 
greater stability and allows larger time steps. Generally, the explicit solver is suited for 
fast transonic flows whereas the implicit solver is better adapted for subsonic flows. 

5. Diffusive terms 

The diffusive part describes internal heat conduction, heat conduction from walls, 
viscosity and molecular diffusion. The diffusive terms depend on the gradients of 
various quantities that are functions of the conserved variables. For instance the heat 
conduction is proportional to the gradient of the temperature. In the discontinuous 
representation of the convective solver these gradients are not defined at the bound- 
aries of the control volumes. Therefore a different approach is needed. For the 
diffusive solver the conserved variables are assumed to be linear functions on each 
triangle. The values at the vertices can be set equal to the average values in the control 
volume surrounding the vertex. This is known as muss lumping and means that the 
unknowns are the same as in the convective problem. Then the two problems may be 
solved together. Alternatively the vertex values may be calculated in such a way that 
the integral of each conserved variable remains constant on the control volume. This 
is in general a more accurate approach, but the unknowns are no longer the same as 
the unknowns in the convective problem, and the two problems must be solved 
separately [6]. 

Here too, both explicit and implicit solvers have been developed. Again, the explicit 
solver is the fastest but least stable. If the time step size exceeds the Fourier limit 
the system will become linearly unstable and the solution will blow up in a few time 
steps. 

6. Chemical solver 

The chemical solver can handle an arbitrary number of elementary chemical 
reactions, provided only that they obey van? Hoff s law and that the reaction kinetics 
can be described by Arrhenius’ law. These laws are strongly non-linear, so here 
a solution must be found to the full non-linear algebraic equations. The chemical 
source terms depend only on the state at every point, not on the gradients and 
therefore, the problem becomes a set of ordinary differential equations. This can be 
solved separately in each control volume. Here it is assumed that the state is constant 
within each control volume. In each control volume one equation must be solved for 
each active chemical species (i.e. those involved in and changed by the chemical 
reactions) plus one for the internal energy. The number of equations can then be 
reduced by noting that the total number of atoms of any given species must remain 
constant (nuclear reactions are not considered). The total number of equations is then 
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r - T* + 1 where T* is the number of active atomic species. The system of equations 
is solved by an iterative method similar to the classical Newton-Raphson method [7]. 

If necessary, special modules can be developed for specific sets of chemical reac- 
tions. This may be done for various purposes. A dedicated module can be made to run 
considerably faster than the general solver, in the eight-reaction hydrogen-air scheme 
shown below, a factor 2 was attained. In addition a special module may allow 
deviations from the strict implementation of van? Hoff and Arrhenius’ laws. The 
drawback is of course the time needed to develop a dedicated module. At present only 
two modules have been developed: one for an eight-reaction hydrogen burning 
scheme [S] and one for a two-reaction hydrogen burning scheme of Rogers and 
Chinitz [9]. This last one uses a modification of Arrhenius’ law to compensate for the 
severe simplification of using only two chemical reactions to describe hydrogen 
combustion. 

7. Grid adaptation 

The grid adaptation module SANGRIA (System for Automatic Non-structured 
Grid Adaptation) consists of four steps: detection, refinement, coarsening, interpola- 
tion. It has been developed for two-dimensional, unstructured, triangular grids which 
are used by REACFLOW. The key idea behind SANGRIA is to the keep as much as 
possible the original grid structure during refining and coarsening and to find back 
exactly to the original grid structure once all refined nodes have been taken away [lo]. 

The detection of the locations where additional nodes have to be added or where 
nodes can be taken away is completely automatic. It is based on local gradients of 
a variable, that can be any variable which the code provides or even a combination of 
variables. Typically the pressure, the density, the Mach number or the temperature is 
chosen. From this variable the gradients from every node to its neighbour nodes are 
calculated. If the gradient exceeds a critical value the grid refinement is triggered. If the 
gradient, however, is flat and has kept this flatness for a certain amount of time then 
the coarsening is triggered. 

The grid refinement algorithm in SANGRIA aims to put a new node exactly in the 
middle between the two nodes, between which the local gradient has exceeded the 
critical value. This means dividing the section which connects these two nodes and to 
divide also the two triangles (T,, T2) which have this section in common (Fig. 2). If the 
section which has to be divided is the longest section of both triangles (Tr and T2) the 
operation results in less flat triangles. In all other cases the triangles become flatter, 
which is not desirable. Therefore an algorithm which tries to avoid this effect has been 
implemented: If the section which should be divided is not the longest section of Tr 
and TZ, then it is attempted to divide the longest section of T, and T,, but only if this 
does not result in a flatter triangle. If this is not possible then the flattening of the 
triangles is accepted and the division of T1 and T2 is performed. 

To make the whole operation reversible (see grid coarsening), two pieces of 
information are stored for every refining process: The node history (h,) and the 
information on which nodes belong to the section which is being divided (h,, h3). The 
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node history is equal to the node number for the original grid and is incremented by 
1 for every refining operation. The higher is the number the more recent is the node. 
The history information is illustrated in Fig. 3, where a simple four-node grid is 
successively refined to a 13-node grid. The history information after the refining steps 
is shown in Table 1. The node number does not correspond necessarily to the history 
information hi, especially after a certain number of refining and coarsening opera- 
tions! 

The basic constraint for SANGRIA’s coarsening algorithm is to preserve the 
original grid and to make the refining process fully reversible. When the local gradient 
of the sensitivity variable around one node is flat for a certain period, the node is 
flagged as ‘possible to delete’. The coarsening algorithm checks with the node-wise 

Fig. 2. Grid refinement in SANGRIA. 

Fig. 3. Refining example with history information 

Table 1 
History information after refining example 

Node No. 1 2 3 4 5 6 7 8 9 10 11 12 13 

hl 1 2 3 4 5 6 7 8 9 10 11 12 13 
hz 0 0 0 0 2 4 1 1 2 4 2 3 1 
h3 0 0 0 0 4 3 2 4 3 5 5 5 5 
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Fig. 4. Coarsening example with history information. 

history information, if the nodes around the flagged node are older than itself. If this is 
the case, it can be deleted without conflicting with the reversibility constraint. With 
the second history information (which nodes have to be connected if this node is taken 
away) it is possible to restore the situation before the refining step was performed. In 
Fig. 4 the refined grid of Fig. 3 is coarsened by one node. Only node number 10, 11,12 
or 13 can be taken away, because the hI information shows, that only these nodes are 
surrounded only by nodes which are ‘older’ than themselves. Node number 10 is taken 
away and with it all four triangles which have this node in common. The empty space 
is filled by a connection between two nodes. h2 and h3 provide node number 4 and 5. 
Analogously also node 11, 12 and 13 can be taken away to arrive to the first picture in 
the second row. From there node numbers 6-9 can be taken away to arrive to the next 
picture. Finally node 5 can be taken away to leave a blank square. From the history 
information of node number 5 we retrieve the information that node numbers ‘2 and 
4 have to be connected. And we are back to the origin. 

Adding nodes or taking them away always require local interpolation of data, 
because the fluid properties are distributed on single elements, whose number has 
been changed. Since the changes are only local, it is sufficient to correct the local 
values of the surrounding nodes. This has to be done conserving mass, momentum and 
energy by balancing the properties before and after refining or coarsening processes. 

8. Graphics 

An Interactive System for On-Line Data Animation (ISOLDA) provides the possi- 
bility to control the ongoing calculation. ISOLDA can produce spectral plots, 
contour plots and vector plots. It is based on a device independent graphic library 
DIGLIB [ 111. The post-processing of the data is done with a graphics package called 
TURCOM (TURbulent COMbustion) [ 121. It produces spectral graphs, iso-contour- 
graphs, vector graphs, both with and without overlaid mesh at different time steps as 
well as x/y graphs of variables over time or variables over a cut in the domain. Various 
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colour tables can be chosen. Zooming in time as well as the automatic sequence of 
plots over time is possible. Macros can be created interactively by the user using 
a macrorecorder. 

9. Hydrogen/air explosion 

For demonstrating the code capabilities a two-dimensional calculation of a hydro- 
gen/air explosion is presented. A closed rectangular area of 1 m x 0.5 m is filled with 
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Fig. 5. Time sequence of pressure distribution of a hydrogen explosion in a container. 
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a mixture of dry air and hydrogen so that the hydrogen is 0.9 times stoichiometric 
with respect to the oxygen. The chemical scheme uses 8 chemical reactions involving 
the six components (O,, HzO, HZ, OH, 0 and H) [7,8]. Nz does not take part in the 
chemical reactions but influences them as a third body. The initial state is: pressure 
1 bar, temperature 293 K everywhere, except for the ignition region where the pres- 
sure is 5 bar and the temperature 1500 K. The hydrogen burning in this region causes 
a detonation wave to propagate through the flammable mixture. A dynamically 
adaptive grid is used based on a to grid of 504 nodes. The number of nodes is 
automatically blown up to about 2000 nodes using the local pressure gradient as 
criterion for refining and coarsening. The numerical scheme is time and space 
second-order explicit van Leer flux vector splitting. Diffusive processes are not taken 
into account. Fig. 5 shows the iso-contour lines for the pressure at three different time 
steps. After the ignition the pressure wave expands radially symmetric until it hits the 
wall where it is reflected. The adaptive grid follows the pressure wave, refining near the 
pressure front and restoring the original grid where the pressure front has passed. 

10. Flame propagation in a tube 

A second demonstration of the capabilities of REACFLOW is the calculation of 
a so-called ‘tulip’ flame in a closed vessel. The vessel has dimensions 0.16 m x 0.04 m 
and initially is filled with a mixture of hydrogen and dry air at ambient pressure and 
temperature. The stoichiometric ratio of hydrogen to oxygen is 0.5 ([HZ] = CO,]). 
The chemical scheme is the eight-reaction scheme mentioned above [S]. As a very 
crude modelling of turbulence the heat conduction coefficient is set to 
J. = 2.0 W K- ’ m- ’ for all chemical species. There is no wall friction. The ignition is 
done by initially setting two control volumes near the middle of the bottom wall to 
1100 K, 1 atm. The initial grid has 16 x 62 = 992 nodes. By dynamic grid adaptation 
this is increased to about 1400 nodes before the flame reaches the side walls, then it 
decreases with the size of the flame front. The numerical scheme used is the fully 
implicit second-order Roe’s approximate Riemann solver. 

Initially the flame expands almost as a semicircle (see Fig. 6). Then when it reaches 
the walls it elongates. As the flame burns out at the walls it accelerates in the near-wall 
region, creating a tulip-like shape. This is thought to be due to the creation of vortices 
at the walls which convect the flame forward at the walls [ 131. The flame front may be 
further distorted by a Rayleigh-Taylor instability due to the large difference in density 
between the burned and the unburned gas. 

11. Future developments 

The 2-D version of REACFLOW will be completed by the end of 1994. The 
verification against experiments and other codes will be continued. The pre- and 
post-processor capabilities will be further improved according to needs of future users. 
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An extension to particle-gas mixtures like dust and sprays seems to be very interest- 
ing. Also a 3-D version could be envisaged. 

12. Conclusion 

A computer program for calculating the behaviour of compressible and incom- 
pressible gas flows in a two-dimensional area has been presented. An arbitrary 
number of components can react following an arbitrary chemical reaction scheme. 
Implicit, explicit and semi-implicit numerical solvers cover a wide range of time scales. 
Diffusion processes are calculated fully implicitly. A automatic and fully reversible 
grid adaptation system automatically adapts the grid to the flow behaviour. Calcu- 
lations of a hydrogen/air explosion and of a ‘tulip’ flame have shown the capabilities 
of the code. 
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